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ABSTRACT
Geostatistics is a tool that can be used to produce maps with the distribution of nutrients essential for the development of plants. 
Therefore, the present study aimed to analyze the spatial variation in chemical attributes of soils under oil palm cultivation in 
agroforestry systems in the eastern Brazilian Amazon, and their spatial dependence pattern. Sixty spatially standardized and 
georeferenced soil samples were collected at each of three sampling sites (DU1, DU2, and DU3) at 0-20 cm depth. Evaluated 
soil chemical attributes were pH, Al3+, H+Al, K+, Ca2+, Mg2+, cation exchange capacity (CEC), P, and organic matter (OM). 
The spatial dependence of these variables was evaluated with a semivariogram analysis, adjusting three theoretical models 
(spherical, exponential, and Gaussian). Following analysis for spatial dependence structure, ordinary kriging was used to estimate 
the value of each attribute at non-sampled sites. Spatial correlation among the attributes was tested using cokriging of data 
spatial distribution. All variables showed spatial dependence, with the exception of pH, in one sampling site (DU3). Highest 
K+, Ca2+, Mg2+, and OM levels were found in the lower region of two sampling sites (DU1 and DU2). Highest levels of Al3+ 
and H+Al levels were observed in the lower region of sampling site DU3. Some variables were correlated, therefore cokriging 
proved to be efficient in estimating primary variables as a function of secondary variables. The evaluated attributes showed 
spatial dependence and correlation, indicating that geostatistics may contribute to the effective management of agroforestry 
systems with oil palm in the Amazon region.
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Dependência espacial e correlação das propriedades do solo cultivado com 
dendezeiro, Elaeis guineensis, em sistemas agroflorestais na Amazônia Oriental
RESUMO
A geoestatística é uma ferramenta utilizada para produzir mapas de distribuição de nutrientes essenciais para o desenvolvimento 
das plantas. O presente estudo teve como objetivo analisar a variação espacial dos atributos químicos do solo sob cultivo de 
dendê em sistemas agroflorestais na Amazônia Oriental brasileira, e seu padrão de dependência espacial. Sessenta amostras de 
solo espacialmente padronizadas e georreferenciadas foram coletadas em cada um de três locais de amostragem (UD1, UD2 e 
UD3), na profundidade de 0-20 cm. Os atributos químicos do solo avaliados foram: pH, Al3+, H+Al, K+, Ca2+, Mg2+, capacidade 
de troca catiônica do solo (CTC), P e matéria orgânica (MO). A dependência espacial dos atributos foi avaliada com análise 
semivariográfica, ajustando-se três modelos teóricos (esférico, exponencial e gaussiano). Após a análise de dependência espacial, 
a krigagem ordinária foi empregada para estimar os valores de cada atributo em locais não amostrados. A correlação espacial 
entre os atributos foi testada utilizando a cokrigagem para espacialização dos dados. Todas as variáveis mostraram dependência 
espacial, exceto pH em UD3. Os maiores teores de K+, Ca2+, Mg2+ e MO foram encontrados na região mais baixa da paisagem, 
em UD1 e UD2. Os maiores teores de Al3+ e H+Al foram observados na região mais baixa da paisagem, em UD3. Algumas 
variáveis foram correlacionadas, portanto  a cokrigagem mostrou-se eficiente na estimativa das variáveis primárias em função 
das secundárias. Os atributos avaliados mostraram dependência e correlação espacial, indicando que a geoestatística pode 
contribuir para o manejo efetivo de sistemas agroflorestais com dendê na região amazônica.

PALAVRAS-CHAVE: cokrigagem, krigagem ordinária, semivariograma, propriedades do solo



SILVA et al. Soil attribute spatial dependency in East Amazonia

 281 VOL. 48(4) 2018: 280 - 289

ACTA
AMAZONICA

INTRODUCTION
The cultivation of the oil palm (Elaeis guineensis Jacq.) began 
in the Amazon region in the mid-1940s, as it was considered 
economically feasible in the edaphoclimatic conditions in the 
region (Silva et al. 2011). Presently, the state of Pará, in the 
eastern Brazilian Amazon, is the largest producer of oil palm 
in Brazil, and its northeastern mesoregion features the highest 
yield (Ribeiro et al. 2010). Oil palm trees are usually produced 
in conventional monoculture, however, there is evidence to 
support that oil palms can be produced in agroforestry systems 
(AFSs) in combination with other agricultural and silvicultural 
species (Santiago et al. 2013). This crop combination can 
contribute to the increase of income in family agriculture 
(Santiago et al. 2013), recovery of degraded areas, and increase 
in plant cover, consequently protecting the soil and reducing 
the emission of greenhouse gases in the Amazon region.

Oil palms have rapid annual growth and demand high 
levels of nutrient stocks in the soil or replenishment through 
soil fertilization, so that the evaluation of soil fertility is 
essential to improve oil palm cultivation and crop productivity 
(Bernardi et al. 2015). According to the same authors, soil 
attributes can vary spatially on a reduced geographical scale 
due to factors such as soil formation, management techniques, 
fertilization and crop rotation. Therefore, the analysis of 
the spatial variability of soil attributes on the scale of the 
plantation area is important for adequate soil management.

One of the most important tools used to determine the 
spatial variability of soil properties is geostatistics (Cavalcante 
et al. 2011), which allows an unbiased inference, with minimal 
variability of soil attributes, to characterize unsampled areas. 
Interpolation methods are used to construct distribution 
maps of the variables of interest. Kriging is a geostatistical 
method that estimates a certain variable in unsampled sites 
by extrapolation from sampled sites. Another geostatistical 
method is cokriging, which can be used in cases in which there 
is a spatial correlation between two or more variables being 
estimated concomitantly (Yamamoto and Landim 2013).

Geostatistics has already been employed in studies of soil 
attribute distribution in the Amazon region. In an evaluation 
of the physical attributes of a Latosol under native forest and 
pasture in the central Amazon, the methodology was used to 
show that attribute variability was lower under pasture than 
under forest, and that the removal of the native forest for 
pasture implantation interfered with the natural distribution 
of soil physical attributes (Aquino et al. 2014). Geostatistics 
was also used to analyze the spatial distribution of soil 
nutrients in a Latosol under native forest with Brazil nuts 
trees in the Tapajós National Forest (FLONA Tapajós), in the 
eastern Brazilian Amazon (Guerreiro et al. 2017). 

The hypothesis of this study is that the chemical properties 
of the soil are spatially dependent and correlated with each other 
in oil palm cultivation in agroforestry systems. The objective of 

this study was to analyze the spatial dependence and correlation 
of the chemical attributes of soils cultivated with oil palm trees 
in three agroforestry systems in the eastern Brazilian Amazon.

MATERIAL AND METHODS
The study was conducted in three agroforestry systems, 
approximately 6 ha each, called demonstrative units 
(DU1, DU2, and DU3), in which each unit has a different 
management. The sampling sites were located within each 
DU. The area is located in the municipality of Tomé-Açu, in 
the northeastern region of Pará state, in the eastern Brazilian 
Amazon region (Figure 1). According to the classification of 
Köppen, the climate of the region is mesothermic and humid 
(Ami), with regular rainfall without a uniform distribution 
throughout the year. Annual averages are rainfall 2,300 mm 
rainfall, 26 °C temperature, and 85% relative humidity. In 
DU1 and DU2 the soil is Yellow Argisol and in DU3 is Yellow 
Latosol (Santos et al 2013). The topography of the region 
varies from flat to smooth wavy (slope ≤ 8%).

The demonstrative units were implemented in 2008 with 
oil palm as the main crop, and each DU had a distinct history 
of land use. DU1 was an abandoned orchard, DU2 had 
been a 9 to 10-year-old poultry system, and DU3 contained 
degraded pasture. The AFS in DU1 was planted with oil 
palm, açaí (Euterpe oleracea Mart.), bacaba (Oenocarpus 
bacaba Mart.), banana (Musa spp.), cocoa (Theobroma cacao 
L.), ipê (Tabebuia spp.), jatobá (Hymenaea courbaril L.), 
manioc (Manihot esculenta subsp. esculenta (Crantz)), pracaxi 
(Pentaclethra macroloba (Willd.) Kuntze) and ucuuba (Virola 
surinamensis (Rol. ex Rottb.) Warb.). In DU2 the AFS was 
composed of oil palm, açaí, bacaba, banana, cocoa, guanandi 
(Calophyllum brasiliensis Cambess.), ipê, manioc, and white 
tachi (Sclerolobium paniculatum Vogel). DU3 was planted 
with oil palm, bacaba, banana, cacao, cedar (Cedrela spp.), 
manioc, passion fruit (Passiflora spp.), and pepper (Piper spp.).

A spatially standardized sampling method was used, with 
30 x 30-m spacing between sampling points, totaling 60 
sampling points in each DU. The soil samples were collected 
at a depth of 0-20 cm. Each sampling point was georeferenced 
using GPS navigation. Soil samples were taken to the Soil 
Fertility Laboratory of Universidade Estadual Paulista. The 
following parameters were determined for each sample: pH in 
CaCl2, aluminum (Al3+), potential acidity (H + Al), potassium 
(K+), calcium (Ca2+), magnesium (Mg2+), cation exchange 
capacity (CEC), phosphorus (P), and organic matter (OM). 

The correlation between the variables was determined 
using Microsoft Excel 2013. Descriptive statistics (mean, 
median, minimum, maximum, standard deviation, and 
coefficient of variation) were calculated using the R software, 
version 3.2.5. Box plot graphs were used to identify outliers. 
The normality assumption was tested using the Shapiro-Wilk 
test at a level of significance of 5%. In order to find spatial 
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dependence in the semivariogram, some variables were 
transformed to the logarithmic scale or discrepant values were 
removed, as described by Schaffrath et al. (2008).  The spatial 
dependence of the soil attributes was verified by applying an 
experimental semivariogram analysis, which was expressed by:

                                               [1]

where γ(h) is the semivariance of variable xi, h is the distance 
(m), and n is the number of experimental pairs of observations 
xi and xi+h, separated by a distance h.

After the construction of the experimental semivariogram, 
the initial parameters “nugget effect,” “sill,” and “range” 
were applied to the adjustment of three theoretical models 
(spherical [2], exponential [3], and Gaussian [4]) using 
the maximum likelihood estimation. The height that the 
semivariogram reaches when it levels off is called the sill (C0 + 
C), and the distance at which the semivariogram levels off to 
the sill is called the range (a). The nugget effect (C0) is caused 
by random variance, and a partial sill (C) is called the spatial 
variance (Yamamoto and Landim 2013).

           [2]

                                                  [3]

                                                [4]                                     

where C0 is the nugget effect, C is the contribution, C0 + C 
is the sill, and a is the range.

The criteria for the choice of the best semivariance model 
were the minimum Akaike Information Criterion (AIC), 
minimum standard error of the estimate (SEE), minimum root 
mean square error (RMSE), and the lowest degree of spatial 
dependence (DSD). The DSD was classified as strong (DSD ≤ 
25%), moderate (25 ≤ DSD ≤ 75%), or weak (DSD ≥ 75%). 
A DSD equal to 100% suggests a semivariogram with a pure 
nugget effect (PNE), indicating that the variable is spatially 
independent (Cambardella et al. 1994).

Figure 1. Location of the study areas in Tomé-Açu, Pará state, Brazil (A), demonstrative unit 1 (B), demonstrative unit 2 (C), and demonstrative unit 3 (D).
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After testing the variables for spatial dependence, soil 
attributes were estimated and spatialized using ordinary 
kriging [5], in order to construct the maps with the spatial 
distribution of the variables of interest.

                                           [5]

where Z*
KO(x0) is the estimate of the unsampled sites, Z(xi) are 

the sampled neighboring sites, and λi are the weights.

The variables were also spatialized by cokriging [6], 
in which a variable that is difficult to determine (primary 
variable) was estimated as a function of another variable that 
was easy to obtain (secondary variable) and was spatially 
dependent and correlated with the primary variable. The 
parameters used to choose the theoretical model that best 
estimated a primary variable as a function of secondary 
variable were the coefficient of determination (R²), SEE, 
RMSE, and DSD.

                 [6]

where (x0) is the primary variable estimate at point x0; Z1 
and Z2 are the primary and secondary variables, respectively; 
n is the number of neighbors, and λi is the weight.

The geostatistical analysis, i.e., the construction of 
semivariograms, was conducted using R software version 3.2.5, in 
the geoR package (Ribeiro Júnior and Diggle 2001). Kriging and 
cokriging were performed in the ArcGIS software version 10.2.

RESULTS
The CV values were considered moderate for most variables 
(Table 1). P and Al3+ were highly variable at DU1 and DU2, 
respectively, thus, their minimum and maximum values were 
considered discrepant for these attributes. Of the variables that 
were not normally distributed, only P in DU1 and DU3 was 
log-transformed, because the other variables presented spatial 
dependence even with non-normality. In addition, the outliers of 
OM in DU1 (11.39 and 15.81 g kg-1), DU2 (12.36, 15.81 and 
45.76 g kg-1), and DU3 (16.82, 17.45, 32.81 and 37.79 g kg -1), 
and Ca2+ and P in DU2 (45.43 mmolc dm-3 and 11.00 and 15.00 
mg dm-3, respectively) were excluded from the dataset to improve 
the spatial dependence of the variables (Supplementary Material, 
Figures S1 and S2). The inclusion of the outliers resulted in a 

Table 1. Descriptive statistics of the chemical characteristics of soil from three study areas (DU1, DU2 and DU3) within 
agroforestry systems containing oil palm plantations in Tomé-Açu, Pará, Brazil.

Statistics pH
Al3+ H+Al K+ Ca2+ Mg2+ CEC OM P

mmolc dm-3 g kg-1 mg dm-3

DU1
Mean 4.58 1.87 41.03 0.97 22.70 5.80 70.49 32.78 16.72
Median 4.58 1.56 41.19 0.93 22.72 6.14 70.19 33.52 11.94
Minimum 4.03 0.64 29.56 0.58 9.29 1.84 54.12 11.39 7.28
Maximum 5.09 5.04 51.12 1.51 37.17 9.51 86.28 43.95 75.13
SD1 0.21 0.97 5.46 0.21 6.00 1.91 8.01 5.70 12.43
CV2 (%) 4.55 51.65 13.30 21.94 26.43 32.92 11.36 17.40 74.33
W3 0.96ns 0.00* 0.51ns 0.09ns 0.73ns 0.54ns 0.48ns 0.00* 0.00*

DU2
Mean 4.76 1.13 33.19 1.03 26.31 6.54 67.06 31.07 6.04
Median 4.80 0.84 31.08 1.05 25.30 6.44 66.22 31.18 5.54
Minimum 4.20 0.16 22.48 0.58 17.55 4.30 50.16 12.36 4.16
Maximum 5.20 4.24 55.03 1.75 45.43 9.51 92.97 45.76 15.00
SD 0.25 0.89 7.74 0.23 5.29 1.31 8.49 5.90 1.73
CV (%) 5.23 78.49 23.31 22.36 20.10 20.07 12.66 19.00 28.69
W 0.05ns 0.00* 0.00* 0.10ns 0.01* 0.09ns 0.51ns 0.18ns 0.00*

DU3
Mean 4.43 2.47 32.84 0.27 16.11 3.45 52.67 24.45 4.35
Median 4.41 2.32 32.50 0.20 15.47 3.47 52.20 23.93 3.85
Minimum 4.20 0.64 25.78 0.13 9.52 2.08 41.91 16.82 2.69
Maximum 4.90 4.48 43.19 0.70 35.69 6.14 77.47 37.79 11.46
SD 0.13 0.95 3.83 0.15 4.15 0.83 5.90 3.48 1.66
CV (%) 2.89 38.32 11.65 56.12 25.75 24.19 11.20 14.22 38.13
W 0.01* 0.31ns 0.07ns 0.00* 0.00* 0.00* 0.00* 0.01* 0.00*

1Standard Deviation; 2Coefficient of variation; 3Shapiro-Wilk Test; nsNot statistically significant; *Significant (p < 0.05).
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worse performance of the semivariogram parameters and poorer 
spatial dependence for OM in DU2 and DU3 (Supplementary 
Material, Figure S3 and Table S1).

All variables showed spatial dependence (Table 2) except 
pH in DU3, which showed a pure nugget effect. The model 
that best represented the semivariance for most variables in 
the three study areas was the spherical model, followed by the 
Gaussian and exponential models (Table 2). Most (88.89%) 
variables presented strong to moderate DSD, indicating a good 
adjustment. Only Ca2+ in DU2 and OM in DU3 presented 
weak DSD. The range varied from 22.30 m (Ca2+) to 215.17 

m (P) in DU1, 30.61 m (OM) to 230.61 m (Al3+) in DU2, 
and 5.78 m (pH) to 340.96 m (Al3+) in DU3. 

In the maps constructed using ordinary kriging (Figures 2, 
3 and 4), the distributions of pH and Al3+ were antagonistic 
in DU1 and DU2 (Figures 2A and 2B, 3A and 3B), because 
the two variables were negatively correlated. Accordingly, the 
areas with the highest levels of H + Al (Figures 2C and 3C) 
had the lowest pH values.

The highest levels of K+, Ca2+, Mg2+, and OM in DU1 
and DU2 (Figures 2 and 3) were observed at lower altitudes, 
although the variability was low. This pattern was not observed 

Figure 2. Spatial distribution of the chemical attributes of the soil in the study area in DU1 using ordinary kriging.
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Table 2. Parameters, degree of spatial dependence, and theoretical models adjusted to the chemical characteristics of the soil 
in three study areas (DU1, DU2 and DU3) within agroforestry systems containing oil palm plantations in Tomé-Açu, Pará, Brazil. 

Statistics  pH 
Al3+ H+Al K+ Ca2+ Mg2+ CEC OM P 

mmolc dm-3 g kg-1 mg dm-3

DU1
AIC1 −22.02 140.02 313.11 −9.82 332.99 191.23 368.25 285.62 62.16
SEE2 0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.01 0.02
RMSE3 0.78 0.84 1.01 0.97 0.90 0.79 1.25 1.06 1.00
C0

4 0.00 0.00 16.19 0.03 0.00 0.00 0.00 9.66 0.07
(C0+C)5 0.11 0.92 37.10 0.04 34.32 3.10 60.85 17.34 0.32
a6 195.68 28.93 163.00 131.24 22.30 31.77 36.41 47.14 215.17
DSD7 (%) 0.00 0.00 43.64 75.00 0.00 0.00 0.00 55.68 22.79
Class S8 S M9 M S S S M S
Model Sp10 E11 G12 Sp E G Sp G Sp

DU2
AIC −3.20 147.93 401.26 −9.73 353.54 203.76 419.40 343.58 165.50
SEE 0.00 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01
RMSE 1.00 0.99 1.00 0.96 1.00 1.00 0.99 1.00 0.97
C0 0.03 0.42 21.38 0.04 17.23 1.08 32.23 14.99 0.51
(C0+C) 0.06 0.85 55.34 0.06 21.81 1.69 68.93 21.89 1.13
a 178.66 230.61 121.77 103.58 164.05 107.67 114.73 30.61 125.69
DSD (%) 51.17 49.23 38.63 64.03 78.99 63.62 46.76 68.49 44.66
Class M M M M W13 M M M M
Model Sp Sp Sp G Sp Sp Sp G Sp

DU3
AIC −69.28 156.15 330.88 −70.21 343.29 146.77 388.43 269.27 11.64
SEE 0.01 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00
RMSE 1.13 1.00 0.94 1.10 1.00 1.06 0.99 1.00 0.95
C0 0.02 0.58 11.12 0.01 13.37 0.46 24.23 5.52 0.04
(C0+C) 0.02 2.02 16.14 0.02 22.54 0.69 34.73 6.49 0.11
a 5.78 340.96 162.74 105.70 175.95 70.34 33.86 196.42 96.73
DSD (%) 100.00 28.81 68.90 32.26 59.32 66.90 69.77 84.99 41.93
Class PNE14 M M M M M M W M
Model - G G Sp G G G Sp G

1Akaike Information Criterion; 2Standard error of the estimate; 3Root mean square error; 4Nugget effect; 5Sill; 6Range; 7Degree of 
spatial dependence; 8Strong; 9Moderate; 10Spherical; 11Exponential; 12Gaussian; 13Weak; 14Pure nugget effect.

in DU3 (Figure 4), where the levels of Al3+ and H + Al were 
higher at lower altitudes. 

The estimates only are plausible when the correlations 
between variables are high (Watanabe et al. 2009). Therefore, 
we selected correlations that had R ≥ 0.60 (Table 3). The DSD 
was considered strong or moderate for all variables and the 
better-adjusted model was the exponential model, followed 
by the spherical and Gaussian models. 

In the maps containing soil attributes estimated by cokriging, 
the co-variable with the highest number of correlations was pH. 
Al3+ was used to estimate Mg2+ (Figure 5D) and H + Al (Figure 
5I). Mg2+ (Figure 5E), H + Al (Figures 5J and 5K), and OM 
(Figure 5L) were used to estimate the CEC. 

DISCUSSION
In the case of variables that show no spatial dependence, such 
as pH in DU3, it is necessary to sample a larger number of 

Table 3. Parameters and adjusted models of semivariograms in three study areas 
(DU1, DU2 and DU3) in agroforestry systems containing oil palm plantations in 
Tomé-Açu, Pará, Brazil.

Variables R1 R²2 SEE3 RMSE4 DSD5 Model
DU1

Al x pH −0.92 0.85 0.38 1.49 0.00 Spherical
Ca x pH 0.77 0.54 3.45 1.36 0.00 Exponential
Mg x pH 0.67 0.63 1.05 1.03 0.00 Exponential
Mg x Al −0.68 0.57 1.30 2.16 0.10 Gaussian
CEC x Mg 0.63 0.36 3.81 1.00 0.00 Exponential

DU2
Al x pH −0.89 0.34 0.44 0.99 45.47 Gaussian
H+Al x pH −0.81 0.59 3.75 0.90 21.25 Spherical
Mg x pH 0.61 0.19 0.53 0.99 48.84 Exponential
H+Al x Al 0.86 0.62 3.64 0.89 21.04 Spherical
CEC x H+Al 0.70 0.48 4.32 0.98 28.97 Spherical

DU3
CEC x H+Al 0.64 0.32 2.36 0.98 44.21 Exponential
CEC x OM 0.71 0.53 3.05 1.06 1.97 Exponential

 1Correlation coefficient; 2Determination coefficient; 3Standard error of the 
estimate; 4Root mean square error; 5Degree of spatial dependence.
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Figure 3. Spatial distribution of the chemical attributes of the soil in the study area in DU2 using ordinary kriging.

Figure 4. Spatial distribution of the chemical attributes of the soil in the study area in DU3 using ordinary kriging.
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sites and/or decrease the distance between sites, or apply 
other deterministic methods, including the inverse square 
distance (ISD) interpolation (Yamamoto and Landim 2013). 
A strong spatial dependence for soil attributes is observed 
in pedogenesis (Guerreiro et al. 2017). A moderate spatial 
dependence occurs in soils that are not homogeneous, and 
a weak spatial dependence may occur in areas that undergo 
extrinsic activities (Cambardella et al. 1994).

Guerreiro et al. (2017) analyzed the distribution of soil 
nutrients in the Tapajós National Forest using geostatistics, 
and adjusted the exponential model for pH (H2O) and zinc, 
the Gaussian model for phosphorus and copper, and the 
spherical model for potassium and manganese. All of these 
chemical attributes presented a moderate spatial dependence, 
while carbon, nitrogen, sodium, calcium, magnesium, 
aluminum, and iron showed no spatial dependence, which 
differs from the results in this study. The authors suggest that 
PNE occurs because the spacing between samples is larger 
than necessary to detect spatial dependence.

In young soils, pH is higher due to the release of mono-
valent and divalent cations, whereas Al3+, the trivalent cation, 
remains at low levels in the soil solution. As the soils age, Al3+ 
remains in mineral form, and its hydrolysis interferes with 
pH (Quesada et al. 2010), justifying the correlation found 
between pH and Al3+ in the present study. The highest levels 
of K+, Ca2+, Mg2+ and OM (in DU1 and DU2), and Al3+ and 
H + Al (in DU3) in lower areas of the study areas may be 
related to the topography and source material, which define 
the action and intensity of soil formation factors, as well as 
the distribution of soil attributes (Fontana et al. 2014). For 
example, cations may leach from higher areas to lower areas 
(Meireles et al. 2012).

Mantovanelli et al. (2016) evaluated the spatial distribution 
of soil acidity in a natural environment in Humaitá, in 
Amazonas state, and observed an irregular distribution of 
H + Al and Al3+ along the topography, which contrasts with 
our results. However, Santos et al. (2008) evaluated how 
topography, soil texture, and land use affected the levels of 

Figure 5. Spatial distribution of chemical characteristics of the soil estimated by cokriging in the study areas in three demonstrative units (DU1, DU2 and DU3).
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extractable phosphorus, alkalinity, and exchangeable acidity 
in Paraíba state, in semiarid northeastern Brazil, and observed 
that the levels of Ca2+, K+ and H + Al were homogeneous 
along the topography, and that levels of P, Mg2+ and Na+ were 
higher in the lower areas.

The higher homogeneity of the soil attributes in DU3 
as compared to DU1 and DU2 may have been due to the 
smaller altitude variation and the presence of unweathered 
and homogeneous soil in DU3. More heterogeneous soils and 
greater variation in altitude increase spatial variability in DU1 
and DU2, so that the number of sampling points probably 
needs to be increased in these sites, and sampling intervals 
should agree with the range of each variable, as proposed by 
Montanari et al. (2008). 

Souza et al. (2008) analyzed the spatial distribution 
of chemical characteristics of a Red-Yellow Argisol under 
pasture and observed a heterogeneous distribution of edaphic 
properties, corroborating our results. Dalchiavon et al. (2012) 
studied the spatial variability of the chemical characteristics 
of a Red Latosol with homogeneous topography and 
found a similar pattern to that of our study, including the 
homogeneous distribution of OM, Ca2+ and Mg2+. 

The low DSD of the cross semivariograms, which allowed 
an adjustment of the theoretical models and the estimation 
of primary variables based on the distribution of secondary 
variables, has the potential to reduce the cost of analyses. 
pH was the secondary variable with the highest number of 
correlations because of its relation with nutrient availability 
in the soil (Sousa et al. 2007). In addition, measuring pH is 
easy and unexpensive. The CEC was estimated by measuring 
the OM, H+ Al, and Mg2+ because the CEC is determined by 
the sum of all bases, exchangeable acidity (Al3+), and potential 
acidity. OM was correlated with CEC due to the activity of 
microorganisms, which increase the availability of nutrients 
such as K, Ca2+, and Mg2+, allowing the OM to increase the 
CEC of the soil (Melo et al. 2008).

Similar results were obtained by Bottega et al. (2011), who 
estimated the levels of Ca2+ and Mg2+ as a function of pH using 
cokriging in a Red Latosol. The authors found a strong spatial 
dependence between pH and Ca (DSD = 16.1%) and between 
pH and Mg (DSD = 15.8%), indicating the possibility 
of using pH to estimate Ca2+ and Mg2+ in unsampled 
sites in the study area, reducing the costs of sampling and 
laboratory measurements. Dalchiavon et al. (2011) used 
pH as a covariable to explain the yield distribution of beans 
in a Distroferric Red Latosol, and observed a strong spatial 
dependence (DSD = 0.16%), highlighting the use of pH as 
an indicator of bean productivity under a no-tillage system.

CONCLUSIONS
The chemical attributes of soil from agroforestry systems based 
on oil palm plantations in the eastern Brazilian Amazon were 

spatially dependent and correlated with one another. The 
results allowed the application of geostatistical techniques for 
the production of soil maps to support the management of 
the agroforestry systems. Cokriging was efficient in estimating 
chemical attributes that were difficult to determine in the 
laboratory as a function of easily determined variables.
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SUPPLEMENTARY MATERIAL (only avaliable in the electronic version)

SILVA et al. Spatial dependency and correlation of properties of soil cultivated with oil palm, Elaeis guineensis, in agroforestry 
systems in the eastern Brazilian Amazon

Figure S1. Boxplot of the organic matter values of soil samples from three study areas (DU1, DU2 and DU3) in an agroforestry systems containing oil palm plantations 
in Tomé-Açu, Pará, Brazil.

Table S1. Semivariogram of organic matter (OM) before exclude some outliers in Tomé-Açu, Pará, Brazil.

Statistics
OM (g kg-1)

DU25 DU36

C0
1 34.27 9.98

(C0+C)2 34.27 12.03

a3 0.00 117.46

DSD4 (%) 100.00 82.96

Class PNE7 Weak

Model - Spherical

1Nugget effect; 2Sill; 3Range; 4Degree of spatial dependence; 5Demonstrative unit 2; 6Demonstrative unit 3; 7Pure nugget effect.
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Figure S2. Boxplot of calcium and phosphorus values in soil samples from one study area (DU2) in an agroforestry systems containing oil palm plantations in Tomé-
Açu, Pará, Brazil.

Figure S3. Semivariogram graphics (prior to removal of outliers) of organic matter values in soil samples from two study areas, DU2 (A) and DU3 (B), in agroforestry 
systems containing oil palm plantations in Tomé-Açu, Pará, Brazil.


